Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
J Immunotoxicol ; 21(1): 2345152, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38659406

RESUMO

The recent global resurgence of severe infections caused by the Group A streptococcus (GAS) pathogen, Streptococcus pyogenes, has focused attention on this microbial pathogen, which produces an array of virulence factors, such as the pore-forming toxin, streptolysin O (SOT). Importantly, the interactions of SOT with human neutrophils (PMN), are not well understood. The current study was designed to investigate the effects of pretreatment of isolated human PMN with purified SOT on several pro-inflammatory activities, including generation of reactive oxygen species (ROS), degranulation (elastase release), influx of extracellular calcium (Ca2+) and release of extracellular DNA (NETosis), using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of PMN to SOT alone caused modest production of ROS and elastase release, while pretreatment with the toxin caused significant augmentation of chemoattractant (fMLP)-activated ROS generation and release of elastase by activated PMN. These effects of treatment of PMN with SOT were associated with both a marked and sustained elevation of cytosolic Ca2+concentrations and significant increases in the concentrations of extracellular DNA, indicative of NETosis. The current study has identified a potential role for SOT in augmenting the Ca2+-dependent pro-inflammatory interactions of PMN, which, if operative in a clinical setting, may contribute to hyper-activation of PMN and GAS-mediated tissue injury.


Assuntos
Proteínas de Bactérias , Cálcio , Armadilhas Extracelulares , Neutrófilos , Elastase Pancreática , Espécies Reativas de Oxigênio , Streptococcus pyogenes , Estreptolisinas , Humanos , Estreptolisinas/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Streptococcus pyogenes/imunologia , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Elastase Pancreática/metabolismo , Células Cultivadas , Ativação de Neutrófilo/efeitos dos fármacos , Infecções Estreptocócicas/imunologia , Degranulação Celular/efeitos dos fármacos , Inflamação/imunologia
2.
Cell Rep ; 43(3): 113962, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483905

RESUMO

Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.


Assuntos
Neuraminidase , Infecções Pneumocócicas , Humanos , Neuraminidase/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo
3.
PLoS Pathog ; 20(3): e1012072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452154

RESUMO

Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Camundongos , Animais , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Camundongos Transgênicos , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Nasofaringe
4.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38411297

RESUMO

Following invasion of the host cell, pore-forming toxins secreted by pathogens compromise vacuole integrity and expose the microbe to diverse intracellular defence mechanisms. However, the quantitative correlation between toxin expression levels and consequent pore dynamics, fostering the intracellular life of pathogens, remains largely unexplored. In this study, using Streptococcus pneumoniae and its secreted pore-forming toxin pneumolysin (Ply) as a model system, we explored various facets of host-pathogen interactions in the host cytosol. Using time-lapse fluorescence imaging, we monitored pore formation dynamics and lifespans of different pneumococcal subpopulations inside host cells. Based on experimental histograms of various event timescales such as pore formation time, vacuolar death or cytosolic escape time and total degradation time, we developed a mathematical model based on first-passage processes that could correlate the event timescales to intravacuolar toxin accumulation. This allowed us to estimate Ply production rate, burst size and threshold Ply quantities that trigger these outcomes. Collectively, we present a general method that illustrates a correlation between toxin expression levels and pore dynamics, dictating intracellular lifespans of pathogens.


Assuntos
Longevidade , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Citosol/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Interações Hospedeiro-Patógeno
5.
PLoS One ; 18(3): e0282970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947540

RESUMO

BACKGROUND: This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS: The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS: Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION: Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION: A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.


Assuntos
Infecções Pneumocócicas , Animais , Humanos , Reprodutibilidade dos Testes , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/complicações , Streptococcus pneumoniae , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo
6.
mBio ; 14(1): e0348822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744883

RESUMO

Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Camundongos , Virulência/genética , Estreptolisinas/genética , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Virulência/metabolismo
7.
J Membr Biol ; 256(1): 91-103, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35980453

RESUMO

Pore-forming proteins (PFPs) are produced by various organisms, including pathogenic bacteria, and form pores within the target cell membrane. Streptolysin O (SLO) is a PFP produced by Streptococcus pyogenes and forms high-order oligomers on the membrane surface. In this prepore state, multiple α-helices in domain 3 of each subunit exist as unfolded structures and transiently interact with each other. They subsequently transition into transmembrane ß-hairpins (TMHs) and form pores with diameters of 20-30 nm. However, in this pore formation process, the trigger of the transition in a subunit and collaboration between subunits remains elusive. Here, I observed the dynamic pore formation process using high-speed atomic force microscopy. During the oligomer transition process, each subunit was sequentially inserted into the membrane, propagating along the oligomer in a domino-like fashion (chain reaction). This process also occurred on hybrid oligomers containing wildtype and mutant subunits, which cannot insert into the membrane because of an introduced disulfide bond. Furthermore, propagation still occurred when an excessive force was added to hybrid oligomers in the prepore state. Based on the observed chain reactions, I estimate the free energies and forces that trigger the transition in a subunit. Furthermore, I hypothesize that the collaboration between subunits is related to the structure of their TMH regions and interactions between TMH-TMH and TMH-lipid molecules.


Assuntos
Proteínas de Bactérias , Estreptolisinas , Estreptolisinas/análise , Estreptolisinas/química , Estreptolisinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
8.
Front Cell Infect Microbiol ; 12: 1002230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389147

RESUMO

Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence in vivo. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.


Assuntos
Infecções Estreptocócicas , Estreptolisinas , Humanos , Estreptolisinas/toxicidade , Estreptolisinas/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes , Queratinócitos/metabolismo , Inflamação
9.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234795

RESUMO

Streptococcus pneumoniae (S. pneumoniae), as a Gram-positive bacterium, can cause severe bacterial pneumonia, and result in high morbidity and mortality in infected people. Meanwhile, isolated drug-resistant S. pneumoniae is growing, which raises concerns about strategies for combatting S. pneumoniae infection. To disturb S. pneumoniae pathogenicity and its drug-resistance, developing novel anti-infective strategies or compounds is urgent. In this study, the anti-infective effect of shionone was explored. A minimum inhibitory concentration (MIC) assay and growth curve determination were performed to evaluate the effect of the tetracyclic triterpenoid compound shionone against S. pneumoniae. Hemolysis tests, western blotting, oligomerization inhibition assays, and molecular docking were carried out to explore the anti-infective mechanism of shionone. Moreover, the protective effect of shionone was also confirmed in a mousepneumonia model. The results showed that the excellent hemolytic inhibitory activity of shionone was observed at less than 8 µg/mL. Meanwhile, shionone could disturb the oligomerization of pneumolysin (PLY) but did not interfere with PLY expression at less than 4 µg/mL. Molecular docking suggested that shionone targeted the ASP-59, ILE-60, THR-57, PHE-344, and ASN-346 amino acid sites to reduce S. pneumoniae pathogenicity. Furthermore, shionone alleviated lung histopathologic injury and decreased lung bacterial colonization in vivo. The above results showed that shionone could bind to the PLY active pocket under the concentrations of 8 µg/mL and neutralize PLY hemolysis activity to reduce S. pneumoniae pathogenicity in vitro and in vivo.


Assuntos
Lesão Pulmonar Aguda , Triterpenos , Aminoácidos/farmacologia , Proteínas de Bactérias/metabolismo , Hemólise , Humanos , Simulação de Acoplamento Molecular , Streptococcus pneumoniae , Estreptolisinas/metabolismo , Estreptolisinas/farmacologia , Triterpenos/farmacologia
10.
J Immunol ; 209(8): 1532-1544, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36165197

RESUMO

Streptococcus pneumoniae is major cause of otitis media (OM) and life-threatening pneumonia. Overproduction of mucin, the major component of mucus, plays a critical role in the pathogenesis of both OM and pneumonia. However, the molecular mechanisms underlying the tight regulation of mucin upregulation in the mucosal epithelium by S. pneumoniae infection remain largely unknown. In this study, we show that S. pneumoniae pneumolysin (PLY) activates AMP-activated protein kinase α1 (AMPKα1), the master regulator of energy homeostasis, which is required for S. pneumoniae-induced mucin MUC5AC upregulation in vitro and in vivo. Moreover, we found that PLY activates AMPKα1 via cholesterol-dependent membrane binding of PLY and subsequent activation of the Ca2+- Ca2+/calmodulin-dependent kinase kinase ß (CaMKKß) and Cdc42-mixed-lineage protein kinase 3 (MLK3) signaling axis in a TLR2/4-independent manner. AMPKα1 positively regulates PLY-induced MUC5AC expression via negative cross-talk with TLR2/4-dependent activation of MAPK JNK, the negative regulator of MUC5AC expression. Moreover, pharmacological inhibition of AMPKα1 suppressed MUC5AC induction in the S. pneumoniae-induced OM mouse model, thereby demonstrating its therapeutic potential in suppressing mucus overproduction in OM. Taken together, our data unveil a novel mechanism by which negative cross-talk between TLR2/4-independent activation of AMPKα1 and TLR2/4-dependent activation of JNK tightly regulates the S. pneumoniae PLY-induced host mucosal innate immune response.


Assuntos
Otite Média , Streptococcus pneumoniae , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Bactérias , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Colesterol/metabolismo , Imunidade Inata , Camundongos , Otite Média/tratamento farmacológico , Estreptolisinas/metabolismo , Receptor 2 Toll-Like/metabolismo
11.
Molecules ; 27(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014299

RESUMO

Pneumolysin (PLY) is a significant virulence factor of Streptococcus pneumoniae (S. pneumoniae), able to break through the defense system of a host and mediate the occurrence of a series of infections. Therefore, PLY as the most ideal target to prevent S. pneumoniae infection has received more and more attention and research. Corilagin is a tannic acid that exhibits excellent inhibition of PLY oligomers without bacteriostatic activity to S. pneumoniae. Herein, hemolytic activity assays, cell viability tests and western blot experiments are executed to evaluate the antivirulence efficacy of corilagin against PLY in vitro. Colony observation, hematoxylin and eosin (H&E) staining and cytokines of bronchoalveolar lavage fluid (BALF) are applied to assess the therapeutic effect of corilagin in mice infected by S. pneumoniae. The results indicate the related genes of corilagin act mainly via enrichment in pathways associated with pneumonia disease. Furthermore, molecular docking and molecular dynamics simulations show that corilagin might bind with domains 3 and 4 of PLY and interfere with its hemolytic activity, which is further confirmed by the site-directed mutagenesis of PLY. Additionally, corilagin limits PLY oligomer production without impacting PLY expression in S. pneumoniae cultures. Moreover, corilagin effectively relieves PLY-mediated cell injury without any cytotoxicity, even then reducing the colony count in the lung and the levels of pro-inflammatory factors in BALF and remarkably improving lung lesions. All the results demonstrate that corilagin may be a novel strategy to cope with S. pneumoniae infection by inhibiting PLY oligomerization.


Assuntos
Infecções Pneumocócicas , Estreptolisinas , Animais , Proteínas de Bactérias/metabolismo , Glucosídeos , Hemólise , Taninos Hidrolisáveis , Camundongos , Simulação de Acoplamento Molecular , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae , Estreptolisinas/metabolismo , Estreptolisinas/farmacologia
12.
Front Immunol ; 13: 945656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967431

RESUMO

Pneumolysin (PLY) is a bacterial pore forming toxin and primary virulence factor of Streptococcus pneumonia, a major cause of pneumonia. PLY binds cholesterol-rich domains of the endothelial cell (EC) plasma membrane resulting in pore assembly and increased intracellular (IC) Ca2+ levels that compromise endothelial barrier integrity. Caveolae are specialized plasmalemma microdomains of ECs enriched in cholesterol. We hypothesized that the abundance of cholesterol-rich domains in EC plasma membranes confers cellular susceptibility to PLY. Contrary to this hypothesis, we found increased PLY-induced IC Ca2+ following membrane cholesterol depletion. Caveolin-1 (Cav-1) is an essential structural protein of caveolae and its regulation by cholesterol levels suggested a possible role in EC barrier function. Indeed, Cav-1 and its scaffolding domain peptide protected the endothelial barrier from PLY-induced disruption. In loss of function experiments, Cav-1 was knocked-out using CRISPR-Cas9 or silenced in human lung microvascular ECs. Loss of Cav-1 significantly enhanced the ability of PLY to disrupt endothelial barrier integrity. Rescue experiments with re-expression of Cav-1 or its scaffolding domain peptide protected the EC barrier against PLY-induced barrier disruption. Dynamin-2 (DNM2) is known to regulate caveolar membrane endocytosis. Inhibition of endocytosis, with dynamin inhibitors or siDNM2 amplified PLY induced EC barrier dysfunction. These results suggest that Cav-1 protects the endothelial barrier against PLY by promoting endocytosis of damaged membrane, thus reducing calcium entry and PLY-dependent signaling.


Assuntos
Proteínas de Bactérias , Caveolina 1 , Pulmão , Pneumonia Pneumocócica , Pneumonia , Estreptolisinas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Colesterol/metabolismo , Endotélio Vascular/metabolismo , Humanos , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Microvasos/metabolismo , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/microbiologia , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/genética , Estreptolisinas/metabolismo , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/microbiologia
13.
Immunology ; 167(3): 413-427, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35835695

RESUMO

Published data for the Streptococcus pneumoniae virulence factor Pneumolysin (Ply) show contradictory effects on the host inflammatory response to infection. Ply has been shown to activate the inflammasome, but also can bind to MRC-1 resulting in suppression of dendritic cell inflammatory responses. We have used an in vitro infection model of human monocyte-derived macrophages (MDM), and a mouse model of pneumonia to clarify whether pro- or anti-inflammatory effects dominate the effects of Ply on the initial macrophage inflammatory response to S. pneumoniae, and the consequences during early lung infection. We found that infection with S. pneumoniae expressing Ply suppressed tumour necrosis factor (TNF) and interleukin-6 production by MDMs compared to cells infected with ply-deficient S. pneumoniae. This effect was independent of bacterial effects on cell death. Transcriptional analysis demonstrated S. pneumoniae expressing Ply caused a qualitatively similar but quantitatively lower MDM transcriptional response to S. pneumoniae compared to ply-deficient S. pneumoniae, with reduced expression of TNF and type I IFN inducible genes. Reduction of the MDM inflammatory response was prevented by inhibition of SOCS1. In the early lung infection mouse model, the TNF response to ply-deficient S. pneumoniae was enhanced and bacterial clearance increased compared to infection with wild-type S. pneumoniae. Overall, these data show Ply inhibits the initial macrophage inflammatory response to S. pneumoniae, probably mediated through SOCS1, and this was associated with improved immune evasion during early lung infection.


Assuntos
Inflamassomos , Streptococcus pneumoniae , Animais , Anti-Inflamatórios , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Interleucina-6 , Macrófagos/metabolismo , Camundongos , Estreptolisinas/genética , Estreptolisinas/metabolismo , Estreptolisinas/farmacologia , Fatores de Necrose Tumoral , Fatores de Virulência
14.
Front Immunol ; 13: 878244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529870

RESUMO

Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.


Assuntos
Infecções Pneumocócicas , Estreptolisinas , Proteínas de Bactérias/metabolismo , Humanos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Estreptolisinas/metabolismo , Fatores de Virulência/metabolismo
15.
J Bacteriol ; 204(1): e0036621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694903

RESUMO

The emergence and continued dominance of a Streptococcus pyogenes (group A Streptococcus, GAS) M1T1 clonal group is temporally correlated with acquisition of genomic sequences that confer high level expression of cotoxins streptolysin O (SLO) and NAD+-glycohydrolase (NADase). Experimental infection models have provided evidence that both toxins are important contributors to GAS virulence. SLO is a cholesterol-dependent pore-forming toxin capable of lysing virtually all types of mammalian cells. NADase, which is composed of an N-terminal translocation domain and C-terminal glycohydrolase domain, acts as an intracellular toxin that depletes host cell energy stores. NADase is dependent on SLO for internalization into epithelial cells, but its mechanism of interaction with the cell surface and details of its translocation mechanism remain unclear. In this study we found that NADase can bind oropharyngeal epithelial cells independently of SLO. This interaction is mediated by both domains of the toxin. We determined by NMR the structure of the translocation domain to be a ß-sandwich with a disordered N-terminal region. The folded region of the domain has structural homology to carbohydrate binding modules. We show that excess NADase inhibits SLO-mediated hemolysis and binding to epithelial cells in vitro, suggesting NADase and SLO have shared surface receptors. This effect is abrogated by disruption of a putative carbohydrate binding site on the NADase translocation domain. Our data are consistent with a model whereby interactions of the NADase glycohydrolase domain and translocation domain with SLO and the cell surface increase avidity of NADase binding and facilitate toxin-toxin and toxin-cell surface interactions. IMPORTANCE NADase and streptolysin O (SLO) are secreted toxins important for pathogenesis of group A Streptococcus, the agent of strep throat and severe invasive infections. The two toxins interact in solution and mutually enhance cytotoxic activity. We now find that NADase is capable of binding to the surface of human cells independently of SLO. Structural analysis of the previously uncharacterized translocation domain of NADase suggests that it contains a carbohydrate binding module. The NADase translocation domain and SLO appear to recognize similar glycan structures on the cell surface, which may be one mechanism through which NADase enhances SLO pore-forming activity during infection. Our findings provide new insight into the NADase toxin and its functional interactions with SLO during streptococcal infection.


Assuntos
Queratinócitos/fisiologia , NAD+ Nucleosidase/metabolismo , Orofaringe/citologia , Streptococcus pyogenes/enzimologia , Substituição de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Estreptolisinas/metabolismo
16.
Microbes Infect ; 24(2): 104888, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34547436

RESUMO

Streptococcus pneumoniae is an important pathogen that causes otitis media, pneumonia, meningitis and bacteremia. As an important virulence factors of S. pneumoniae, pneumolysin (PLY) can penetrate cell membranes and lead to cell lysis and inflammation, which is one of the main causes of infection and damage of S. pneumoniae. Therefore, using pneumolysin as a target to study its inhibitors can provide a new treatment strategy for pneumococcal disease. This study analyzed the inhibitory effect of the natural compound hederagenin on PLY in vitro. The results show that hederagenin has great potential as a new strategy for the treatment of pneumococcal diseases.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Proteínas de Bactérias/metabolismo , Humanos , Ácido Oleanólico/análogos & derivados , Infecções Pneumocócicas/tratamento farmacológico , Estreptolisinas/metabolismo
17.
Sci Rep ; 11(1): 19011, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561464

RESUMO

Group A Streptoccocus (GAS) is among the most diverse of all human pathogens, responsible for a range of clinical manifestations, from mild superficial infections such as pharyngitis to serious invasive infections such as necrotising fasciitis and sepsis. The drivers of these different disease phenotypes are not known. The GAS cholesterol-dependent cytolysin, Streptolysin O (SLO), has well established cell and tissue destructive activity. We investigated the role of SLO in determining disease outcome in vivo, by using two different clinical lineages; the recently emerged hypervirulent outbreak emm type 32.2 strains, which result in sepsis, and the emm type 1.0 strains which cause septic arthritis. Using clinically relevant in vivo mouse models of sepsis and a novel septic arthritis model, we found that the amount and activity of SLO was vital in determining the course of infection. The emm type 32.2 strain produced large quantities of highly haemolytic SLO that resulted in rapid development of sepsis. By contrast, the reduced concentration and lower haemolytic activity of emm type 1.0 SLO led to translocation of bacteria from blood to joints. Importantly, sepsis associated strains that were attenuated by deletion or inhibition of SLO, then also translocated to the joint, confirming the key role of SLO in determining infection niche. Our findings demonstrate that SLO is key to in vivo phenotype and disease outcome. Careful consideration should be given to novel therapy or vaccination strategies that target SLO. Whilst neutralising SLO activity may reduce severe invasive disease, it has the potential to promote chronic inflammatory conditions such as septic arthritis.


Assuntos
Fenótipo , Infecções Estreptocócicas/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidade , Estreptolisinas/metabolismo , Animais , Artrite Infecciosa/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Translocação Bacteriana , Modelos Animais de Doenças , Fasciite Necrosante/microbiologia , Humanos , Camundongos , Terapia de Alvo Molecular , Faringite/microbiologia , Prognóstico , Sepse/microbiologia , Infecções Estreptocócicas/terapia , Estreptolisinas/fisiologia
18.
Front Immunol ; 12: 573266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046027

RESUMO

Epigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF-α production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.


Assuntos
Proteínas de Bactérias/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Metilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica/métodos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia , Estreptolisinas/genética
19.
J Ethnopharmacol ; 275: 114133, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892068

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ma-xing-shi-gan-tang (MXSGT), which is documented in the Treatise on Febrile Diseases and is a therapeutic drug, is a well-known classic prescription in China and has been widely studied. Previous studies have shown that MXSGT has various pharmacological activities, including anti-influenza virus activity, and ameliorates microvascular hyperpermeability and inflammatory reactions. However, no study has reported the effect of MXSGT in the treatment of bacterial pneumonia. AIM OF THE STUDY: In this study, the potential inhibition of MXSGT against the virulence of S. pneumoniae by targeting PLY was investigated. MATERIALS AND METHODS: First, HPLC analysis was used to determine the main components of MXSGT. Then PLY protein was constructed and used for hemolysis assay and western blot to test the ability of MXSGT to inhibit PLY activity, production and widowed characteristics. The growth curve of S. pneumoniae was drawled with or without MXSGT treatment. In addition, the inhibition of MXSGT against PLY-mediated A549 cell death was examined by cytotoxicity assay. Finally, the mouse experiment was used to verify the effect of MXSGT on mouse lungs. RESULTS: This work has discovered that MXSGT, a TCM prescription, is an effective inhibitor of PLY, an important virulence factor that is essential for S. pneumoniae pathogenicity. MXSGT inhibits the oligomerization of PLY without affecting S. pneumoniae growth and PLY production. In addition, experimental MXSGT treatment was effective against S. pneumoniae infection both in vitro and in vivo. CONCLUSION: These findings directly demonstrate the potential mechanism of the Chinese herbal formula MXSGT in the treatment of pneumococcal disease and provide additional evidence for promotion of the wide use of MXSGT in the clinic.


Assuntos
Antibacterianos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Estreptolisinas/antagonistas & inibidores , Células A549 , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Hemólise/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Medicina Tradicional Chinesa , Camundongos Endogâmicos BALB C , Ovinos , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/metabolismo , Virulência/efeitos dos fármacos
20.
Toxins (Basel) ; 13(2)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671422

RESUMO

Sickle cell disease (SCD) is one of the most common autosomal recessive disorders in the world. Due to functional asplenia, a dysfunctional antibody response, antibiotic drug resistance and poor response to immunization, SCD patients have impaired immunity. A leading cause of hospitalization and death in SCD patients is the acute chest syndrome (ACS). This complication is especially manifested upon infection of SCD patients with Streptococcus pneumoniae (Spn)-a facultative anaerobic Gram-positive bacterium that causes lower respiratory tract infections. Spn has developed increased rates of antibiotics resistance and is particularly virulent in SCD patients. The primary defense against Spn is the generation of reactive oxygen species (ROS) during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn itself produces high levels of the ROS hydrogen peroxide (H2O2) as a virulence strategy. Apart from H2O2, Spn also secretes another virulence factor, i.e., the pore-forming exotoxin pneumolysin (PLY), a potent mediator of lung injury in patients with pneumonia in general and particularly in those with SCD. PLY is released early on in infection either by autolysis or bacterial lysis following the treatment with antibiotics and has a broad range of biological activities. This review will discuss recent findings on the role of pneumococci in ACS pathogenesis and on strategies to counteract the devastating effects of its virulence factors on the lungs in SCD patients.


Assuntos
Síndrome Torácica Aguda/microbiologia , Anemia Falciforme/complicações , Peróxido de Hidrogênio/metabolismo , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Fatores de Virulência/metabolismo , Síndrome Torácica Aguda/diagnóstico , Síndrome Torácica Aguda/tratamento farmacológico , Anemia Falciforme/diagnóstico , Animais , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Pneumonia Pneumocócica/diagnóstico , Pneumonia Pneumocócica/tratamento farmacológico , Prognóstico , Fatores de Risco , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...